The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia.
نویسندگان
چکیده
Episodic ataxia type 2 (EA2) is a hereditary cerebellar ataxia associated with mutations in the P/Q-type voltage-gated calcium (Ca(2+)) channels. Therapeutic approaches for treatment of EA2 are very limited. Presently, the potassium (K(+)) channel blocker 4-aminopyridine (4-AP) constitutes the most promising treatment, although its mechanism of action is not understood. Here we show that, in contrast to what is commonly believed, therapeutic concentrations of 4-AP do not increase the inhibitory drive of cerebellar Purkinje cells. Instead, 4-AP restores the severely diminished precision of pacemaking in Purkinje cells of EA2 mutant mice by prolonging the action potential and increasing the action potential afterhyperpolarization. Consistent with this mode of action, the therapeutic efficacy of 4-AP was comparable, and not additive, to chlorzoxazone, an activator of Ca(2+)-dependent K(+) channels that also restores the precision of Purkinje cell pacemaking. The likely target of 4-AP at the concentrations used are the K(v)1 family of K(+) channels, possibly the K(v)1.5 subtype. Because at higher concentrations 4-AP blocks a large array of K(+) channels and is a proconvulsant, use of selective K(v)1 channel blockers is likely to be a safer substitute for treatment of cerebellar ataxia.
منابع مشابه
Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملIntroducing treatment strategy for cerebellar ataxia in mutant med mice: Combination of acetazolamide and 4-Aminopyridine
Purkinje neurons are the sole output neuron of the cerebellar cortex, and they generate high-frequency action potentials. Electrophysiological dysfunction of Purkinje neurons causes cerebellar ataxia. Mutant med mice have the lack of expression of the Scn8a gene. This gene encodes the NaV1.6 protein. In med Purkinje neurons, regular high-frequency firing is slowed, and med mice are ataxic. The ...
متن کامل4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6
Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA6(84Q/+)) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor con...
متن کاملIn vivo 4-aminopyridine treatment alters the neurotoxin 3-acetylpyridine-induced plastic changes in intrinsic electrophysiological properties of rat cerebellar Purkinje neurones.
Electrophysiological dysfunction of Purkinje cells causes cerebellar ataxia. Recent studies indicated that 4-aminopyridine (4-AP) can prevent the attacks in patients with episodic ataxia type 2. However, the cellular mechanism(s) by which 4-AP might be beneficial for the improvement of motor function remain unclear. Here, electrophysiological and behavioural consequences of in vivo co-treatment...
متن کاملTreatment with 4-aminopyridine improves upper limb tremor of a patient with multiple sclerosis: a video case report.
The reversible potassium channel blocker 4-aminopyridine is effective in the treatment of numerous cerebellar dysfunctions, such as episodic ataxia type 2 and downbeat nystagmus syndrome. In 2011, its sustained release form, dalfampridine, was admitted in Europe for the treatment of walking difficulties in patients with multiple sclerosis (MS). Here we report the case of a 44-year old patient w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 21 شماره
صفحات -
تاریخ انتشار 2010